Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 8(6): e0086223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37909742

RESUMO

IMPORTANCE: Microbial cell surface hydrophobicity (CSH) reflects nonspecific adhesion ability and affects various physiological processes, such as biofilm formation and pollutant biodegradation. Understanding the regulation mechanisms of CSH will contribute to illuminating microbial adaptation strategies and provide guidance for controlling CSH artificially to benefit humans. Sphingomonads, a common bacterial group with great xenobiotic-degrading ability, generally show higher CSH than typical Gram-negative bacteria, which plays a positive role in organic pollutant capture and cell colonization. This study verified that the variations of two native plasmids involved in synthesizing outer membrane proteins and polysaccharides greatly affected the CSH of sphingomonads. It is feasible to control their CSH by changing the plasmid copy number and sequences. Additionally, considering that plasmids are likely to evolve faster than chromosomes, the CSH of sphingomonads may evolve quickly to respond to environmental changes. Our results provide valuable insights into the CSH regulation and evolution of sphingomonads.


Assuntos
Bactérias , Poluentes Ambientais , Humanos , Plasmídeos/genética , Interações Hidrofóbicas e Hidrofílicas
2.
Microbiol Spectr ; 10(6): e0279822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318024

RESUMO

Microbial extracellular electron transfer (EET) is essential in many natural and engineering processes. Compared with the versatile EET pathways of Gram-negative bacteria, the EET of Gram-positive bacteria has been studied much less and is mainly limited to the flavin-mediated pathway. Here, we investigate the EET pathway of a Gram-positive filamentous bacterium Lysinibacillus varians GY32. Strain GY32 has a wide electron donor spectrum (including lactate, acetate, formate, and some amino acids) in electrode respiration. Transcriptomic, proteomic, and electrochemical analyses show that the electrode respiration of GY32 mainly depends on electron mediators, and c-type cytochromes may be involved in its respiration. Fluorescent sensor and electrochemical analyses demonstrate that strain GY32 can secrete cysteine and flavins. Cysteine added shortly after inoculation into microbial fuel cells accelerated EET, showing cysteine is a new endogenous electron mediator of Gram-positive bacteria, which provides novel information to understand the EET networks in natural environments. IMPORTANCE Extracellular electron transport (EET) is a key driving force in biogeochemical element cycles and microbial chemical-electrical-optical energy conversion on the Earth. Gram-positive bacteria are ubiquitous and even dominant in EET-enriched environments. However, attention and knowledge of their EET pathways are largely lacking. Gram-positive bacterium Lysinibacillus varians GY32 has extremely long cells (>1 mm) and conductive nanowires, promising a unique and enormous role in the microenvironments where it lives. Its capability to secrete cysteine renders it not only an EET pathway to respire and survive, but also an electrochemical strategy to connect and shape the ambient microbial community at a millimeter scale. Moreover, its incapability of using flavins as an electron mediator suggests that the common electron mediator is species-dependent. Therefore, our results are important to understanding the EET networks in natural and engineering processes.


Assuntos
Cisteína , Elétrons , Transporte de Elétrons , Cisteína/metabolismo , Proteômica , Bactérias Gram-Positivas/metabolismo , Flavinas/metabolismo
3.
Nat Commun ; 12(1): 1709, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731718

RESUMO

Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.


Assuntos
Transporte de Elétrons/fisiologia , Bactérias Gram-Positivas/metabolismo , Bacillaceae/citologia , Bacillaceae/crescimento & desenvolvimento , Bacillaceae/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Condutividade Elétrica , Eletrodos/microbiologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Grafite , Microscopia de Força Atômica , Nanofios
4.
Front Microbiol ; 11: 262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158435

RESUMO

Bacterial extracellular electron transport (EET) plays an important role in many natural and engineering processes. Some periplasmic non-heme redox proteins usually coexist with c-type cytochromes (CTCs) during the EET process. However, in contrast to CTCs, little is known about the roles of these non-heme redox proteins in EET. In this study, the transcriptome of Shewanella decolorationis S12 showed that the gene encoding a periplasmic sulfite dehydrogenase molybdenum-binding subunit SorA was significantly up-regulated during electrode respiration in microbial fuel cells (MFCs) compared with that during azo-dye reduction. The maximum current density of MFCs catalyzed by a mutant strain lacking SorA (ΔsorA) was 25% higher than that of wild strain S12 (20 vs. 16 µA/cm2). Both biofilm formation and the current generation of the anodic biofilms were increased by the disruption of sorA, which suggests that the existence of SorA in S. decolorationis S12 inhibits electrode respiration. In contrast, disruption of sorA had no effect on respiration by S. decolorationis S12 with oxygen, fumarate, azo dye, or ferric citrate as electron acceptors. This is the first report of the specific effect of a periplasmic non-heme redox protein on EET to electrode and provides novel information for enhancing bacterial current generation.

5.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175185

RESUMO

Bacterial anaerobic respiration using an extracellular electron acceptor plays a predominant role in global biogeochemical cycles. However, the mechanisms of bacterial adaptation to the toxic organic pollutant as the extracellular electron acceptor during anaerobic respiration are not clear, which limits our ability to optimize the strategies for the bioremediation of a contaminated environment. Here, we report the physiological characteristics and the global gene expression of an ecologically successful bacterium, Shewanella decolorationis S12, when using a typical toxic organic pollutant, amaranth, as the extracellular electron acceptor. Our results revealed that filamentous shift (the cells stretched to fiber-like shapes as long as 18 µm) occurred under amaranth stress. Persistent stress led to a higher filamentous cell rate and decolorization ability in subcultural cells compared to parental strains. In addition, the expression of genes involved in cell division, the chemotaxis system, energy conservation, damage repair, and material transport in filamentous cells was significantly stimulated. The detailed roles of some genes with significantly elevated expressions in filamentous cells, such as the outer membrane porin genes ompA and ompW, the cytochrome c genes arpC and arpD, the global regulatory factor gene rpoS, and the methyl-accepting chemotaxis proteins genes SHD_2793 and SHD_0015, were identified by site-directed mutagenesis. Finally, a conceptual model was proposed to help deepen our insights into both the bacterial survival strategy when toxic organics were present and the mechanisms by which these toxic organics were biodegraded as the extracellular electron acceptors.IMPORTANCE Keeping toxic organic pollutants (TOPs) in tolerable levels is a huge challenge for bacteria in extremely unfavorable environments since TOPs could serve as energy substitutes but also as survival stresses when they are beyond some thresholds. This study focused on the underlying adaptive mechanisms of ecologically successful bacterium Shewanella decolorationis S12 when exposed to amaranth, a typical toxic organic pollutant, as the extracellular electron acceptor. Our results suggest that filamentous shift is a flexible and valid way to solve the dilemma between the energy resource and toxic stress. Filamentous cells regulate gene expression to enhance their degradation and detoxification capabilities, resulting in a strong viability. These novel adaptive responses to TOPs are believed to be an evolutionary achievement to succeed in harsh habitats and thus have great potential to be applied to environment engineering or synthetic biology if we could picture every unknown node in this pathway.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Shewanella/metabolismo , Anaerobiose , Compostos Azo/toxicidade , Proteínas de Bactérias/genética , Biodegradação Ambiental , Corantes/toxicidade , Transporte de Elétrons , Elétrons , Oxirredução , Shewanella/efeitos dos fármacos , Shewanella/genética
6.
Front Microbiol ; 9: 2117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237793

RESUMO

Microbial anode respiration in microbial fuel cells (MFCs) can enhance the degradations of many electron acceptor-type contaminants which are presumed to be competitive to anode respiration. The mechanisms underlying those counterintuitive processes are important for MFCs application but are unclear. This study integrated MFCs with anaerobic baffled reactor (ABR), termed MFC-ABR, to enhance the reduction of azo dye acid orange-7 (AO-7). Compare with ABR, MFC-ABR enhanced the degradation of AO-7, especially at high AO-7 concentration (800 mg/L). Acute toxicity test suggested a higher detoxication efficiency in MFC-ABR. Higher microbial viability, dehydrogenase activity and larger sludge granule size were also observed in MFC-ABR. MFC-ABR significantly enriched and reshaped the microbial communities relative to ABR. Bacteria with respiratory versatility, e.g., Pseudomonas, Geobacter, and Shewanella, were significantly enriched. Functional prediction showed that six metabolism functions (manganese-, iron-, fumarate- and nitrate-respiration, oil bioremediation and chemoheterotrophy) were significantly stimulated while methanogenesis, sulfate-respiration, hydrogen-oxidation were suppressed in MFC-ABR relative to ABR. The results provided important information for understanding the role of microbial anode respiration in contaminated environments.

7.
Front Microbiol ; 8: 1115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676795

RESUMO

Bacterial extracellular electron transfer (EET) plays a key role in various natural and engineering processes. Outer membrane c-type cytochromes (OMCs) are considered to be essential in bacterial EET. However, most bacteria do not have OMCs but have redox proteins other than OMCs in their extracellular polymeric substances of biofilms. We hypothesized that these extracellular non-cytochrome c proteins (ENCP) could contribute to EET, especially with the facilitation of electron mediators. This study compared the electrode respiring capacity of wild type Shewanella decolorationis S12 and an OMC-deficient mutant. Although the OMC-deficient mutant was incapable in direct electricity generation in normal cultivation, it regained electricity generation capacity (26% of the wide type) with the aid of extracellular electron mediator (riboflavin). Further bioelectrochemistry and X-ray photoelectron spectroscopy analysis suggested that the ENCP, such as proteins with Fe-S cluster, may participate in the falvin-mediated EET. The results highlighted an important and direct role of the ENCP, generated by either electricigens or other microbes, in natural microbial EET process with the facilitation of electron mediators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...